1,098 research outputs found

    Faint counts as a function of morphological type in a hierarchical merger model

    Full text link
    The unprecedented resolution of the refurbished Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST) has led to major advances in our understanding of galaxy formation. The high image quality in the Medium Deep Survey and Hubble Deep Field has made it possible, for the first time, to classify faint distant galaxies according to morphological type. These observations have revealed a large population of galaxies classed as irregulars or which show signs of recent merger activity. Their abundance rises steeply with apparent magnitude, providing a likely explanation for the large number of blue galaxies seen at faint magnitudes. We demonstrate that such a population arises naturally in a model in which structure forms hierarchically and which is dynamically dominated by cold dark matter. The number counts of irregular, spiral and elliptical galaxies as a function of magnitude seen in the HST data are well reproduced in this model.We present detailed predictions for the outcome of spectroscopic follow-up observations of the HST surveys. By measuring the redshift distributions of faint galaxies of different morphological types, these programmes will provide a test of the hierarchical galaxy formation paradigm and might distinguish between models with different cosmological parameters.Comment: 5 pages, 3 postscript figures included. To be published as a Letter in Monthly Notices of the RAS. Postscript version available at http://star-www.dur.ac.uk/~cmb/counts.htm

    Recursive Approximation of the High Dimensional max Function

    Get PDF
    An alternative smoothing method for the high dimensional max functionhas been studied. The proposed method is a recursive extension of thetwo dimensional smoothing functions. In order to analyze the proposedmethod, a theoretical framework related to smoothing methods has beendiscussed. Moreover, we support our discussion by considering someapplication areas. This is followed by a comparison with analternative well-known smoothing method.n dimensional max function;recursive approximation;smoothing methods;vertical linear complementarity (VLCP)

    GALAXY DYNAMICS IN CLUSTERS

    Full text link
    We use high resolution simulations to study the formation and distribution of galaxies within a cluster which forms hierarchically. We follow both dark matter and baryonic gas which is subject to thermal pressure, shocks and radiative cooling. Galaxy formation is identified with the dissipative collapse of the gas into cold, compact knots. We examine two extreme representations of galaxies during subsequent cluster evolution --- one purely gaseous and the other purely stellar. The results are quite sensitive to this choice. Gas-galaxies merge efficiently with a dominant central object while star-galaxies merge less frequently. Thus, simulations in which galaxies remain gaseous appear to suffer an ``overmerging'' problem, but this problem is much less severe if the gas is allowed to turn into stars. We compare the kinematics of the galaxy population in these two representations to that of dark halos and of the underlying dark matter distribution. Galaxies in the stellar representation are positively biased (\ie over-represented in the cluster) both by number and by mass fraction. Both representations predict the galaxies to be more centrally concentrated than the dark matter, whereas the dark halo population is more extended. A modest velocity bias also exists in both representations, with the largest effect, σgal/σDM≃0.7\sigma_{gal}/\sigma_{DM} \simeq 0.7, found for the more massive star-galaxies. Phase diagrams show that the galaxy population has a substantial net inflow in the gas representation, while in the stellar case it is roughly in hydrostatic equilibrium. Virial mass estimators can underestimate the true cluster mass by up to a factor of 5. The discrepancy is largest if only the most massive galaxies are used, reflecting significant mass segregation.Comment: 30 pages, self-unpacking (via uufiles) postscript file without figures. Eighteen figures (and slick color version of figure 3) and entire paper available at ftp://oahu.physics.lsa.umich.edu/groups/astro/fews Total size of paper with figures is ~9.0 Mb uncompressed. Submitted to Ap.J

    Cosmological Reionization

    Full text link
    In popular cosmological scenarios, some time beyond a redshift of 10, stars within protogalaxies created the first heavy elements; these systems, together perhaps with an early population of quasars, generated the ultraviolet radiation and mechanical energy that reheated and reionized the cosmos. The history of the Universe during and soon after these crucial formative stages is recorded in the all-pervading intergalactic medium (IGM), which contains most of the ordinary baryonic material left over from the big bang. Throughout the epoch of structure formation, the IGM becomes clumpy and acquires peculiar motions under the influence of gravity, and acts as a source for the gas that gets accreted, cools, and forms stars within galaxies, and as a sink for the metal enriched material, energy, and radiation which they eject.Comment: LateX, 13 pages, 4 figures, slightly revised version (corrected several typos), to appear in Phil. Trans. R. Soc. London A (2000) 35

    A Comparison of Semi-Analytic and Smoothed Particle Hydrodynamics Galaxy Formation

    Get PDF
    We compare the statistical properties of galaxies found in two different models of hierarchical galaxy formation: the semi-analytic model of Cole et al. and the smoothed particle hydrodynamics (SPH) simulations of Pearce et al. Using a `stripped-down' version of the semi-analytic model which mimics the resolution of the SPH simulations and excludes physical processes not included in them, we find that the two models produce an ensemble of galaxies with remarkably similar properties, although there are some differences in the gas cooling rates and in the number of galaxies that populate halos of different mass. The full semi-analytic model, which has effectively no resolution limit and includes a treatment of star formation and supernovae feedback, produces somewhat different (but readily understandable) results. Agreement is particularly good for the present-day global fractions of hot gas, cold dense (i.e. galactic) gas and uncollapsed gas, for which the SPH and stripped-down semi-analytic calculations differ by at most 25%. In the most massive halos, the stripped-down semi-analytic model predicts, on the whole, up to 50% less gas in galaxies than is seen in the SPH simulations. The two techniques apportion this cold gas somewhat differently amongst galaxies in a given halo. This difference can be tracked down to the greater cooling rate in massive halos in the SPH simulation compared to the semi-analytic model. (abridged)Comment: 19 pages, 13 figures, to appear in MNRAS. Significantly extended to explore galaxy progenitor distributions and behaviour of models at high redshift

    The Role of Starbursts in the Formation of Galaxies & Active Galactic Nuclei

    Full text link
    Starbursts are episodes of intense star-formation in the central regions of galaxies, and are the sites of roughly 25% of the high-mass star-formation in the local universe. In this contribution I review the role starbursts play in the formation and evolution of galaxies, the intergalactic medium, and active galactic nuclei. Four major conclusions are drawn. 1) Starburst galaxies are good analogues (in fact, the only plausible local analogues) to the known population of star-forming galaxies at high-redshift. 2) Integrated over cosmic time, supernova-driven galactic-winds (`superwinds') play an essential role in the evolution of galaxies and the inter-galactic medium. 3) Circumnuclear starbursts are an energetically-significant component of the Seyfert phenomenon. 4) The evolution of the population of the host galaxies of radio-quiet quasars is significantly different than that of powerful radio galaxies, and is at least qualitatively consistent with the standard picture of the hierarchical assembly of massive galaxies at relatively late times.Comment: 16 pages, 4 figures, Royal Society discussion meeting `The formation of galaxies

    Bulge Globular Clusters in Spiral Galaxies

    Full text link
    There is now strong evidence that the metal-rich globular clusters (GC) near the center of our Galaxy are associated with the Galactic bulge rather than the disk as previously thought. Here we extend the concept of bulge GCs to the GC systems of nearby spiral galaxies. In particular, the kinematic and metallicity properties of the GC systems favor a bulge rather than a disk origin. The number of metal-rich GCs normalized by the bulge luminosity is roughly constant (i.e. bulge S_N ~ 1) in nearby spirals, and this value is similar to that for field ellipticals when only the red (metal--rich) GCs are considered. We argue that the metallicity distributions of GCs in spiral and elliptical galaxies are remarkably similar, and that they obey the same correlation of mean GC metallicity with host galaxy mass. We further suggest that the metal-rich GCs in spirals are the direct analogs of the red GCs seen in ellipticals. The formation of a bulge/spheroidal stellar system is accompanied by the formation of metal-rich GCs. The similarities between GC systems in spiral and elliptical galaxies appear to be greater than the differences.Comment: 5 pages, Latex, 2 figures, 1 table, Accepted for publication in ApJ Letter

    A G1-like globular cluster in NGC 1023

    Full text link
    The structure of a very bright (MV = -10.9) globular cluster in NGC 1023 is analyzed on two sets of images taken with the Hubble Space Telescope. From careful modeling of King profile fits to the cluster image, a core radius of 0.55+/-0.1 pc, effective radius 3.7+/-0.3 pc and a central V-band surface brightness of 12.9+/-0.5 mag / square arcsec are derived. This makes the cluster much more compact than Omega Cen, but very similar to the brightest globular cluster in M31, G1 = Mayall II. The cluster in NGC 1023 appears to be very highly flattened with an ellipticity of about 0.37, even higher than for Omega Cen and G1, and similar to the most flattened clusters in the Large Magellanic Cloud.Comment: 14 pages, 3 figures, 1 table. Accepted for AJ, Oct 200
    • …
    corecore